

OCR Computer Science AS Level

1.4.2 Data Structures
Advanced Notes

www.pmt.education

Specification

1.4.2 a)

● Arrays
● Records
● Lists
● Tuples

1.4.2 b)

● Stack
● Queue

www.pmt.education

Arrays, Records, Lists, and Tuples

Arrays
An array is an ordered, finite set of elements of a single type. A 1D (one-dimensional)
array is a linear array. Unless stated in the question, arrays are always taken to be
zero-indexed. This means that the first element in the array is considered to be at position
zero. Below is an example of a one-dimensional array:
__
oneDimensionalArray = [1, 23, 12, 14, 16, 29, 12] //creates a

1D array
print(oneDimensionalArray[3])

>> 14
__

A two-dimensional array can be visualised as a table or spreadsheet . When searching
through a 2D array, you first go down the rows and then across the columns to find a given
position. This is the reverse to the method used to find a set of coordinates. Below is an
example involving a two-dimensional array.
__
twoDimensionalArray = [[123, 28, 90, 38, 88, 23, 47],[1, 23, 12,
14, 16, 29, 12]]

print(twoDimensionalArray)

>> [[23, 28, 90, 38, 88, 23, 47],
 [1, 23, 12, 14, 16, 29, 12]]

print(twoDimensionalArray[1,3]) // Goes down and then across

>> 14
__

A three-dimensional array can be visualised as a multi-page spreadsheet and can be
thought of as multiple 2D arrays. Selecting an element in a 3D array requires the following
syntax to be used: threeDimensionalArray[z,y,x], where z is the array number, y
is the row number and x is the column number.
__
threeDimensionalArray = [[[12,8],[9,6,19]],[[241,89,4,1],[19,2]]]
print(threeDimensionalArray[0,1,2])

>> 19
__

www.pmt.education

Records
A record is more commonly referred to as a row in a file and is made up of fields. Records
are used in databases, as shown in the table below:

ID FirstName Surname

001 Antony Joshua

002 Tyson Fury

003 Deonte Wilder

Above is a file containing three records, where each record has three fields. A record is
declared in the following manner:
__
fighterDataType = record

integer ID
string FirstName
string Surname

end record
__

Each field in the record can be identified by recordName.fieldName. First, however,
the record must be created. When creating a record, a variable must first be declared:
fighter : fighterDataType
Then its attributes can be accessed, using the following syntax:
fighter.FirstName

Lists
A list is a data structure consisting of a number of ordered items where the items can
occur more than once. Lists are similar to 1D arrays and elements can be accessed in the
same way. The difference is that list values are stored non-contiguously . This means they
do not have to be stored next to each other in memory, as data in arrays is stored. Lists
can also contain elements of more than one data type, unlike arrays.

There are a range of operations that can be performed involving lists, described in the
table below. The following structure is used when manipulating lists:
__
List = [23, 36, 62, 49 , 23, 29, 12]
List.function(Parameters)
__

www.pmt.education

List Operations Example Description

isEmpty() List.isEmpty()
>> False

Checks if the list is empty

append(value) List.append(15)
>>

Adds a new value to the
end of the list

remove(value) List.remove(23)
>>

Removes the value the first
time it appears in the list

search(value) List.search(38)
>> False

Searches for a value in the
list.

length() List.length()
>> 7

Returns the length of the
list

index(value) List.index(23)
>> 0

Returns the position of the
item

insert(position, value) List.insert(4,25)
>>

Inserts a value at a given
position

pop() List.pop()
>>12

Returns and removes the
last value in the list

pop(position) list.pop(3) Returns and removes the
value in the list at the given
position

Tuples
An ordered set of values of any type is called a tuple. A tuple is immutable , which means it
cannot be changed: elements cannot be added or removed once it has been created.
Tuples are initialised using regular brackets instead of square brackets.

tupleExample = (“Value1”, 2, “Value3”)

Elements in a tuple are accessed in a similar way to elements in an array, with the
exception that values in a tuple cannot be changed or removed. Attempting to do so will
result in a syntax error.

print(tupleExample[0])

>> Value1 :
tupleExample[0] = “ChangedValue”

>> Syntax Error

www.pmt.education

Stacks and Queues

Stacks
A stack is a last in first out (LIFO) data structure. Items can only be added to or removed
from the top of the stack. Stacks are key data structures in computer science; they are
used to reverse an action, such as to go back a page in web browsers. The ‘undo’ buttons
that applications widely make use of also utilise stacks. A stack can be implemented as
either a static structure or a dynamic structure. Where the maximum size required is
known in advance, static stacks are preferred, as they are easier to implement and make
more efficient use of memory. Stacks are implemented using a pointer which points to the
top of the stack, where the next piece of data will be inserted.

There are numerous operations that can be performed on a stack and that you need to be
aware of. The following syntax must be used when calling a function on a stack:_

Stack Operations Example Description

isEmpty() Stack.isEmpty()
>> True

Checks if the stack is
empty. Works by checking
the value of the top pointer.

push(value) Stack.append(“Nadia”)
>>
Stack.append(“Elijah”)
>>

Adds a new value to the end
of the list. Needs to check
that the stack is not full
before pushing to the stack.

peek() Stack.peek()
>> “Elijah”

Returns the top value from
the stack. First checks the
stack is not empty by
looking at value of top
pointer.

pop() Stack.pop()
>> “Elijah”

Removes and returns the
top value of the stack. First
checks the stack is not
empty by looking at value of
top pointer.

size() Stack.size()
>> 2

Returns the size of the stack

isFull() Stack.isFull()
>> False

Checks if the stack if full
and returns a Boolean
value. Works by comparing
stack size to the top pointer.

www.pmt.education

Queues
A queue is a first in first out (FIFO) data structure; items are added to the end of the queue
and are removed from the front of the queue. Queues are commonly used in printers,
keyboards and simulators. There are a few different ways in which a queue can be
implemented, but they all follow the same basic principles.

A linear queue is a data structure consisting of an array. Items are added into the next
available space in the queue, starting from the front. Items are removed from the front of
the queue. Queues make use of two pointers: one pointing to the front of the queue and
one pointing to the back of the queue, where the next item can be added.

The highlighted box shows the front of the queue.
__

enQueue(Task3) // enQueue(item) is how items are added to a queue

Position 0 1 2 3 4 5

Data Task1 Task2 Task3

deQueue() // deQueue(item) is how items are removed from a queue

Position 0 1 2 3 4 5

Data Task2 Task3

enQueue(Task4)

Position 0 1 2 3 4 5

Data Task2 Task3 Task4

deQueue()

Position 0 1 2 3 4 5

Data Task3 Task4

__

www.pmt.education

As the queue removes items, there are addresses in the array which cannot be used
again, making a linear queue an ineffective implementation of a queue.
Circular queues try to solve this. A circular queue operates in a similar way to a linear
queue in that it is a FIFO structure. However, it is coded in a way that once the queue’s
rear pointer is equal to the maximum size of the queue, it can loop back to the front of the
array and store values here, provided that it is empty. Therefore, circular queues can use
space in an array more effectively, although they are harder to implement.

Below is an example illustrating how the rear pointer in a circular queue works:
__
enQueue(Task5)

Position 0 1 2 3 4 5

Data Task3 Task4 Task5

rearPointer : 4
maxSize : 5

enQueue(Task6)

Position 0 1 2 3 4 5

Data Task3 Task4 Task5 Task6

rearPointer : 5
maxSize : 5

enQueue(Task7)

Position 0 1 2 3 4 5

Data Task7 Task3 Task4 Task5 Task6

rearPointer : 0
maxSize : 5

Queue Operations Example Description

enQueue(value) Queue.enQueue(“Nadia”)
>>
Queue.enQueue(“Elijah”)
>>

Adds a new item to the end
of the queue. Increments
the back pointer.

www.pmt.education

deQueue() Queue.deQueue()
>>

Removes the item from the
front of the queue.
Increments the front pointer.

isEmpty() Queue.isEmpty()
>> False

Checks if the queue if empty
by comparing the front and
back pointer.

isFull() Queue.isFull()
>> False

Checks if the queue is full
by comparing the back
pointer and queue size.

www.pmt.education

